Project Title: Influence of Algal / Bacterial Interactions on Denitrification in Stream Biofilms
نویسنده
چکیده
Within aquatic ecosystems, periphytic biofilms can be hot spots of denitrification, and previous work has suggested that algal taxa within periphyton can influence the species composition and activity of resident denitrifying bacteria. This study tested the hypothesis that algal species composition within biofilms influences the structure and function of associated denitrifying bacterial communities through the composition of organic exudates. A mixed population of bacteria was incubated with organic carbon isolated from one of seven algal species or from one of two streams that differed in anthropogenic inputs. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) revealed differences in the organic composition of algal exudates and stream waters, which, in turn, selected for distinct bacterial communities. Organic carbon source had a significant effect on potential denitrification rates (DNP) of the communities, with organics isolated from a stream with high anthropogenic inputs resulting in a bacterial community with the highest DNP. There was no correlation between DNP and numbers of denitrifiers (based on nirS copy numbers), but there was a strong relationship between the species composition of denitrifier communities (as indicated by tag pyrosequencing of nosZ genes) and DNP. Specifically, the relative abundance of Pseudomonas stutzeri-like nosZ sequences across treatments correlated significantly with DNP, and bacterial communities incubated with organic carbon from the stream with high anthropogenic inputs had the highest relative abundance of P. stutzeri-like nosZ sequences. These results demonstrate a significant relationship between bacterial community composition and function and provide evidence of the potential impacts of anthropogenic inputs on the structure and function of stream microbial communities.
منابع مشابه
Spatial variation in caddisfly grazing regimes within a northern California watershed.
Ecologists seek better understanding of why species interactions change across space and time in natural communities. In streams, species effects on resources and community structure may change as physical characteristics of the stream environment change along drainage networks. We examined spatial and seasonal effects of armored grazers using a small-scale exclusion experiment that was replica...
متن کاملSeasonal response of stream biofilm communities to dissolved organic matter and nutrient enrichments.
Dissolved organic matter (DOM) and inorganic nutrients may affect microbial communities in streams, but little is known about the impact of these factors on specific taxa within bacterial assemblages in biofilms. In this study, nutrient diffusing artificial substrates were used to examine bacterial responses to DOM (i.e., glucose, leaf leachate, and algal exudates) and inorganic nutrients (nitr...
متن کاملChemical interactions between marine macroalgae and bacteria
We review research from the last 40 yr on macroalgal–bacterial interactions. Marine macroalgae have been challenged throughout their evolution by microorganisms and have developed in a world of microbes. Therefore, it is not surprising that a complex array of interactions has evolved between macroalgae and bacteria which basically depends on chemical interactions of various kinds. Bacteria spec...
متن کاملImpacts of labile organic carbon concentration on organic and inorganic nitrogen 1 utilization by a stream biofilm bacterial community 2 3 4 5 Running title : Carbon availability affects bacterial nitrogen use 6 7 8 9
متن کامل
Impacts of labile organic carbon concentration on organic and inorganic nitrogen utilization by a stream biofilm bacterial community.
In aquatic ecosystems, carbon (C) availability strongly influences nitrogen (N) dynamics. One manifestation of this linkage is the importance in the dissolved organic matter (DOM) pool of dissolved organic nitrogen (DON), which can serve as both a C and an N source, yet our knowledge of how specific properties of DOM influence N dynamics are limited. To empirically examine the impact of labile ...
متن کامل